
PRESENTED BY Krish Shah

High-Performance Iterative Fast Fourier
Transform with Financial Application
ENG EC527 Spring 2025

Problem Context
The Fast Fourier Transform (FFT) is a core algorithm in high-performance computing and
financial modeling. It converts time-series signals to the frequency domain with optimal
complexity. However, traditional recursive FFTs are inefficient on modern processors due
to poor cache locality and function call overhead, making them unsuitable for high-
performance shared-memory systems.

Project Motivation
To address this, I implemented an iterative radix-2 Cooley-Tukey FFT in C and
parallelized it using OpenMP, scaling to inputs of up to 2 elements. The goal is to apply
this high-performance FFT to real-world financial data like AAPL log returns, analyze the
power spectrum, and validate both correctness and performance using thread scaling,
memory modeling, and roofline analysis — all grounded in EC527 principles.

24

Problem & Motivation

Algorithm Structure
The serial implementation is based on the radix-2 Cooley-Tukey
algorithm, using an iterative decimation-in-time (DIT) strategy. It
avoids recursion entirely by applying log N stages of in-place
butterfly operations, improving cache locality and enabling
predictable memory access. Before each stage, the input array is
reordered using bit-reversal permutation to ensure correct input
ordering for the butterfly structure.

2

Design Decisions
The FFT operates on an array of complex double values,
processed in-place to minimize memory usage. This approach
enables tight control over memory layout and allows efficient use
of CPU caches. By isolating bit-reversal from the main computation
and avoiding unnecessary memory copies, the design provides a
foundation for both correctness and performance. Results are
validated against NumPy’s FFT, with error under 10-10

Serial FFT Design

Parallelization with OpenMP
Targeted Parallelism
To scale the FFT across multiple cores, we parallelized two independent parts of the
computation using OpenMP:

The bit-reversal permutation, which applies a deterministic reordering of elements
The outer loop of each butterfly stage, where work is distributed across blocks of
m-length computations

By parallelizing over independent butterfly blocks, we maximize core utilization while
keeping memory accesses predictable and regular.

Key Decisions & Observations
We used #pragma omp parallel for schedule(static) to evenly distribute work and reduce
scheduling overhead. False sharing was avoided by ensuring thread-local writes to
distinct cache lines. At high thread counts, performance was limited by memory
bandwidth, not computation — consistent with the low arithmetic intensity of FFT. Still, we
achieved strong scaling up to 128 threads on large inputs.

Design-Level Optimizations
Beyond parallelism, multiple design-level optimizations were
applied to reduce instruction count, improve memory locality, and
avoid hardware-level bottlenecks. These include in-place memory
updates, loop fusion, thread-private variables, and cache-aware
scheduling.

Why They Matter
These optimizations collectively reduce cache misses, instruction
overhead, and contention on shared memory resources. Combined
with OpenMP, they enable the FFT to scale efficiently up to 128
threads on large inputs. Importantly, these are architecture-aware,
aligning directly with EC527's emphasis on hardware-level
performance reasoning.

Optimization Techniques
In-Place Memory

Loop Fusion

Thread-Private Buffers

Static Scheduling

N Serial (s) Parallel (s) Speedup

214 0.00053 0.00055 0.95×

218 0.02254 0.02298 0.98×

220 0.09438 0.10200 0.93×

222 0.52157 0.52200 1.00×

224 2.47123 2.47782 1.00×

Performance Results

Thread Scaling & Efficiency

Roofline Model & Hardware Counters
🧮 Roofline Metrics

Arithmetic Intensity: 2.74 FLOPs/Byte
Measured Performance: 0.69 GFLOPs/sec
Peak Bandwidth: ~100 GB/s
Peak Compute: 1000 GFLOPs/sec
Conclusion: FFT lies far below both ceilings → memory-bound

🧪 Hardware Counters (perf)
Cache References: 131,279,761
Cache Misses: 105,976,450
Miss Rate: 80.7%
Total Time: 12.44s
FFT Time: 2.85s
Conclusion: High cache miss rate confirms bandwidth
bottleneck

Financial Application: AAPL vs SPY

The C FFT output matches NumPy’s spectrum, validating correctness.
AAPL shows more high-frequency content than SPY, indicating greater
short-term volatility.
FFT reveals structural differences in financial signals not visible in the time
domain.

Future Work
Add AVX2 SIMD to butterfly
kernel
Optimize thread placement
(NUMA-aware)
Extend to real-time/streaming
financial data
Integrate into ML workflows for
market regime detection

Conclusions & Future Work
Conclusions

Validated iterative FFT in C with
OpenMP
Scaled to 2 inputs and 128
threads

24

Roofline + perf confirm memory-
bound behavior
Applied to AAPL/SPY: revealed
volatility in frequency domain

